FOLLOW UP OF INJECTED POLYURETHANE SLAB JACKING

by

Keely Heintz Apprenticeships in Science and Engineering Intern

for

Oregon Department of Transportation Research Unit 200 Hawthorne SE, Suite B-240 Salem, Oregon 97301-5192

August 2003

APPROXIMATE CONVERSIONS TO SI UNITSAPPROXIMATE CONVERSIONS FROM SI UNITSSymbolWhen You KnowMultiply ByTo FindSymbolSymbolWhen You KnowMultiply ByTo FindSymbolSymbolinches25.4millimetersmmmillimeters0.039inchesinftfeet0.305metersmmmeters3.28feetftftydyards0.914metersmmmeters0.639inchesinminmiles1.61kilometerskmmmeters0.6321milesmilin²square fact0.993meters squaredmm²millimeters squared0.016square inchesin²ft²square fact0.093meters squaredm²m²meters squared1.1764square factft²yd²square pards0.836meters squaredm²m²meters squared1.164square yardsyd²yd²square miles2.59kilometers squaredm²m²meters squared1.165square milesm²yd³square miles2.59kilometers squaredm²m²meters squared1.165square milesm²gal galons3.785litersLLliters0.034fluid ouncesfl ozft³cubic feet0.028meters cubedm³m³meters cubed35.315cubic feetf³ <t< th=""><th></th><th colspan="11">SI* (MODERN METRIC) CONVERSION FACTORS</th></t<>		SI* (MODERN METRIC) CONVERSION FACTORS										
LENGTHLENGTHininches25.4millimetersmmmmellimeters0.039inchesinftfeet0.305metersmmmeters3.28feetftydyards0.914metersmmmeters3.28feetftmimiles1.61kilometerskmkilometers0.621milesmil AREA in²square inches645.2millimeters squared m^{02} meters squared10.764square inchesin²yd²square inches645.2mellimeters squared m^{02} meters squared10.764square feetft²yd²square miles2.59kilometers squared m^{2} meters squared10.764square square squareyd²acacres0.405hectareshahectares2.47acresacft³square miles2.59kilometers squaredmlmilliliters0.034fluid ouncesfl ozgalgallons3.785litersLliters0.264gallonsgalyd³cubic feet0.028meters cubedm³meters cubed35.315cubic feetft³yd³cubic feet0.028meters cubedm³mdmilliliters0.035ouncesozyd³cubic feet0.028meters cubedm³meters cubed1.308		APPROXIMATE	CONVERSIO	ONS TO SI UNITS		APPROXIMATE CONVERSIONS FROM SI UNITS						
in in the ftinches25.4 metersmillimetersmm mmillimeters0.039inchesin in ftftfeet0.305metersmmmeters3.28feetftydyards0.914metersmmmeters1.09yardsydmimiles1.61kilometerskmkilometers0.621milesmiles AREA millimeters squaredmm2millimeters squared0.016square inchesin²ft²square inches645.2meters squaredm²m²meters squared10.764square inchesin²ft²square yards0.836meters squaredm²m²meters squared1.196square feetft²yd²square miles2.59kilometers squaredm²meters squared1.196square inchesm²acacres0.405hectareshahectares2.47acresacareffuid ounces2.95.7millimeters squaredm³meters cubed3.315cubic feetfl²galgalons3.785litersLMLliters0.264galonsgalgalgalons3.785litersLMMmeters cubed3.315cubic feetfl³yd³cubic feet0.028meters cubedm³meters cubed3.33.15cubic feetfl³ <td>Symbol</td> <td>When You Know</td> <td>Multiply By</td> <td>To Find</td> <td>Symbol</td> <td>Symbol</td> <td>When You Know</td> <td>Multiply</td> <td>By To Find</td> <td>Symbol</td>	Symbol	When You Know	Multiply By	To Find	Symbol	Symbol	When You Know	Multiply	By To Find	Symbol		
	LENGTH							<u>LENGTH</u>				
yd miyards miles0.914meters klometersm kmm klometersmeters klometers1.09yards milesyd milesmiles1.61kilometerskmkilometers0.621milesmilesmilesmsquare inches645.2millimeters squaredmm² m²mm² m²mm² m²millimeters squared0.0016square inchesin² square inchessquare inchesin² f²yd² yd²square feet0.093meters squaredm² m²mm² m²millimeters squared0.0016square inchesin² f²yd² yd²square feet0.093meters squaredm² m²m² m²meters squared1.09square inchesin² f²yd² yd²square parks0.405hectaresha ha ha hectareshectares0.447square feetn² f²fl oz gal gal gal gallons3.785litersnl< m³mlmil <militers< th="">0.034fluid ouncesfl oz galfl oz gal gal gal gal gal squaresources28.55gramsg g g m³g m³meters cubedm³mil<milers< th="">nu m³meters cubedn3m³fl oz gal gal gal gal gal gal gal squaresourcesgal gal gal m³ma mama maters cubedm³maters cubedn3m³fl oz gal gal gal gal cubic feetga.35 s.35<th< td=""><td>in</td><td>inches</td><td>25.4</td><td>millimeters</td><td>mm</td><td>mm</td><td>millimeters</td><td>0.039</td><td>inches</td><td>in</td></th<></milers<></militers<>	in	inches	25.4	millimeters	mm	mm	millimeters	0.039	inches	in		
mimiles1.61kilometerskmkmkilometers0.621milesmi In^2 square inches645.2millimeters squaredmm²mm²millimeters squared0.0016square inchesin² ft^2 square feet0.093meters squaredm²mm²millimeters squared0.0016square inchesin² t^2 square yards0.836meters squaredm²m²meters squared1.0764square inchesin² t^2 square miles2.59kilometers squaredm²m²meters squared1.196square miles d^2 t $galgallons3.785litersLliters0.264gallonsgalgallonsgalgallonsga$	ft	feet	0.305	meters	m	m	meters	3.28	feet	ft		
mimiles1.61kilometerskmkmkilometers0.621milesmi $IntAREAKmkilometers0.621milesmilmilInt^2square inches645.2millimeters squaredmm²mm²millimeters squared0.0016square inchesInt^2Int^2square feet0.093meters squaredm²m²meters squared10.764square inchesInt^2yd^2square miles0.836meters squaredm²meters squared1.196square inchesInt^2acacres0.405hectareshahectares2.47acresacarcs0.405hectaresnakilometers squaredInters0.368square milesIntersacsquare miles2.59kilometers squaredm²m²meters squared0.386square milesIntersflfluid ounces29.57millilitersIntersIntersInters0.034fluid ouncesgalgalgallons3.785litersIntersIntersm³meters cubed35.315cubic feet0.028meters cubedm³yd^3cubic yards0.765meters cubedm³meters cubed35.315cubic yardsyd³yd^3ounds0.454kilogramskgkgkilograms2.025pounds0.25ounces0.25$	yd	yards	0.914	meters	m	m	meters	1.09	yards	yd		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		miles	1.61	kilometers	km	km	kilometers	0.621	miles	mi		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	AREA							<u>AREA</u>				
yd²square yards ac acres0.836 0.405meters squared ha ha m²m² ha tillibles to 	in ²	square inches	645.2	millimeters squared	mm ²	mm ²	millimeters squared	0.0016	square inches	in ²		
yd²square yards0.836meters squared $m²$ m²meters squared1.196square yardsyd²acacres0.405hectaresha	ft^2	square feet	0.093	meters squared	m^2	m ²	meters squared	10.764	square feet	ft^2		
mi²square miles2.59kilometers squaredkm²km²kilometers squared0.386square milesmi²fl ozfluid ounces29.57millilitersmlmlmilliliters0.034fluid ouncesfluid ouncesfloid ouncesgalgalgallons3.785litersLLliters0.264gallonsgaltd³cubic feet0.028meters cubedm³meters cubed35.315cubic feetflid ouncesgalyd³cubic yards0.765meters cubedm³meters cubed35.315cubic feetflidMASSVOLUMEMassOzeMassozounces28.35gramsgggrams0.035ouncesozto z0.907megagramsMgMgmegagrams1.102short tons (2000 lb)oppoundsflidouncesoztttttttttttoz0.907megagramsMgMgmegagrams1.102short tons (2000 lb)optons (2000 lb)tons (2000 lb) <th< td=""><td>yd²</td><td>square yards</td><td>0.836</td><td>meters squared</td><td>m^2</td><td>m^2</td><td>meters squared</td><td>1.196</td><td>square yards</td><td>yd²</td></th<>	yd ²	square yards	0.836	meters squared	m^2	m^2	meters squared	1.196	square yards	yd ²		
Image: Problem in the state of the stat	ac	acres	0.405	hectares	ha	ha	hectares	2.47	acres	ac		
fl oz gal gal onsfluid ounces29.57 29.57millilitersml Lml millilitersml 0.034fluid ouncesfloid gal gallonsgal gal gal d'3.785litersLLliters0.0264gallonsgal gal gal m³meters cubed35.315cubic feetfl³ gal gal m³meters cubed35.315cubic feetfl³ gal gal m³meters cubed35.315cubic feetfl³ gal m³meters cubed1.308cubic yardsyd³NOTE: Volumes greater that 1000 L shall be shown in m³.MASSOz ounces28.35gramsg g kgg kggrams0.035ouncesou ou cubic yardsoz gal poundsou cubic yardsou cubic yardsno cubic yardsou cubic yardsou cubic yardsmillilitersnilliliters	mi ²	square miles	2.59	kilometers squared	km ²	km ²	kilometers squared	0.386	square miles	mi ²		
gal ft³ cubic feet3.785litersL meters cubedL m³liters0.264 m³galonsgal ft³ cubic feetgal ft³ m³yd³ volte yards0.765meters cubedm³m³meters cubed35.315 meters cubedcubic feetft³ yd³NOTE: Volumes greater that 1000 L shall be shown in m³.m³m³meters cubed1.308cubic yardsyd³MASSor or or lb pounds28.35 0.454gramsg kilogramsg kgg kggrams0.035 kgouncesouncesoz poundsou cubic yardsoz poundsTEMPERATURE (start)MgMggrams0.035 kgouncesou kgou kgmag gramsg kgg kilogramsg kgg kilogramsg hongg short tons (2000 lb)ou cubic yardsor poundsor poundsou pounds<			<u>VOLUME</u>					<u>VOLUME</u>	<u>,</u>			
ft³ yd³cubic feet0.028 meters cubedmeters cubedm³ m³m³ meters cubedm³ m³meters cubed35.315 meters cubedcubic feetft³ m³MASSMASSoz oz ounces28.35 0.454grams kilogramsg kg Mgg megagramsg kg Mgg megagramsg 	fl oz	fluid ounces	29.57	milliliters	ml	ml	milliliters	0.034	fluid ounces	fl oz		
ft³ yd³cubic feet0.028 neters cubedmeters cubedm³ m³meters cubed35.315 m³cubic feetft³ yd³yd³cubic yards0.765 neters cubedmeters cubedm³ m³meters cubed1.308cubic feetft³ yd³MASSvormes greater than 1000 L shall be shown in m³.m³ m³meters cubed1.308cubic feetft³ cubic yardsyd³oz ounces28.35 0.454grams kilogramsg kgg kgg kggrams0.035 kgouncesouncesoz ouncesouncesouncesoz ouncesouncesoz poundsouncesoz poundsouncesoz poundsouncesoz poundsouncesoz poundsouncesoz poundsouncesoz poundsouncesoz poundsouncesoz poundsouncesoz poundsouncesoz poundsouncesoz poundsouncesoz poundsouncesoz poundsouncesoz poundsoz poundsouncesoz poundsoz poundsouncesoz poundsouncesoz poundsoz poundsouncesoz poundsoz poundsoz poundsouncesoz poundsoz poundsouncesoz poundsouncesoz poundsouncesoz poundsoz poundsouncesoz poundsoz poundsoz poundsouncesoz poundsoz pounds	gal	gallons	3.785	liters	L		liters	0.264	gallons	gal		
NOTE: Volumes greater than 1000 L shall be shown in m³.MASSMASSozounces28.35gramsgggrams0.035ouncesozbpounds0.454kilogramskgkgkilograms2.205poundslbTshort tons (2000 lb)0.907megagramsMgMgmegagrams1.102short tons (2000 lb)for tons (2000 lb)T°FFahrenheit(F-32)/1.8Celsius°C°C°CCelsius1.8C+32Fahrenheit°F	ft^3	cubic feet	0.028	meters cubed			meters cubed	35.315	cubic feet			
MASSozounces28.35gramsgggrams0.035ouncesozlbpounds0.454kilogramskgkgkilograms2.205poundslbTshort tons (2000 lb)0.907megagramsMgMgmegagrams1.102short tons (2000 lb)T°FFahrenheit(F-32)/1.8Celsius°C°CCelsius1.8C+32Fahrenheit°F	yd ³	cubic yards	0.765	meters cubed	m ³	m ³	meters cubed	1.308	cubic yards	yd ³		
ozounces28.35gramsggggrams0.035ouncesozlbpounds0.454kilogramskgkgkilograms2.205poundslbTshort tons (2000 lb)0.907megagramsMgMgmegagrams1.102short tons (2000 lb)TTEMPERATURE (exact)°FFahrenheit(F-32)/1.8Celsius°C°C°CCelsius1.8C+32Fahrenheit°F	NO	TE: Volumes greater th	an 1000 L shal	l be shown in m ³ .								
Ib Tpounds0.454kilogramskg megagramskg Mgkg Mgkilograms2.205 megagramspoundslb TTTMg <td></td> <td></td> <td>MASS</td> <td></td> <td></td> <td></td> <td></td> <td>MASS</td> <td></td> <td></td>			MASS					MASS				
lbpounds0.454kilogramskgkgkilograms2.205poundslbTshort tons (2000 lb)0.907megagramsMgMgmegagrams1.102short tons (2000 lb)TTEMPERATURE (exact)°FFahrenheit(F-32)/1.8Celsius°C°CCelsius1.8C+32Fahrenheit°F	oz	ounces	28.35	grams	g	g	grams	0.035	ounces	OZ		
TEMPERATURE (exact) TEMPERATURE (exact) °F Fahrenheit (F-32)/1.8 Celsius °C °C Celsius 1.8C+32 Fahrenheit °F	lb	pounds	0.454	kilograms			kilograms	2.205	pounds	lb		
°F Fahrenheit (F-32)/1.8 Celsius °C °C Celsius 1.8C+32 Fahrenheit °F	Т	short tons (2000 lb)	0.907	megagrams	Mg	Mg	megagrams	1.102	short tons (2000 lb)	Т		
		TEM	PERATURE (<u>exact)</u>		TEMPERATURE (exact)						
*SI is the symbol for the International System of Measurement	°F	Fahrenheit	(F-32)/1.8	Celsius	°C	°C	Celsius	1.8C+32	Fahrenheit	°F		
	*SI is the	e symbol for the Interna	ational System	of Measurement		11						

ACKNOWLEDGMENTS

The author thanks Steven Soltesz for providing his previous report to follow up and for being so supportive during this apprenticeship. The author also thanks ODOT Research for making work fun and enjoyable. The author appreciates all those who helped out by providing needed information in the compilation of this report.

DISCLAIMER

This document is disseminated under the sponsorship of the Oregon Department of Transportation and the U.S. Department of Transportation in the interest of information exchange. The State of Oregon and the U.S. Government assume no liability of its contents or use thereof.

The contents of this report reflect the views of the author who is solely responsible for the facts and accuracy of the material presented. The contents do not necessarily reflect the official views of the Oregon Department of Transportation or the U.S. Department of Transportation.

The State of Oregon and the U.S. Government do not endorse products or manufacturers. Trademarks or manufacturer's names appear herein only because they are considered essential to the object of this document.

This report does not constitute a standard, specification, or regulation.

FOLLOW UP OF INJECTED POLYURETHANE SLAB JACKING

TABLE OF CONTENTS

1.0 I	NTRODUCTION	l
	GLENN JACKSON BRIDGE FOLLOW-UP REPORT	
1.2	OREGON'S EXPERIENCE WITH INJECTED POLYURETHANE SLAB JACKING	L
2.0 1	TESTING METHODS	5
	GLENN JACKSON BRIDGE FOLLOW UP REPORT	
3.0 F	RESULTS	5
	GLENN JACKSON BRIDGE FOLLOW-UP REPORT	
4.0 0	CONCLUSIONS13	3
	GLENN JACKSON BRIDGE FOLLOW UP REPORT	
5.0 F	REFERENCES1	5

LIST OF TABLES

Table 3.1: Relative change in elevation over time with respect to the first, post-injection survey on	
6/14/2000. All measurements are in millimeters. Position locations are shown in the diagram	5
Table 3.2: Results of linear regression for each position and the average settling rate for groups of positions	5
calculated from the slopes	9
Table 3.3: Site evaluation spreadsheet	.10

LIST OF FIGURES

Figure 2.1:	Arrangement of the brass surveying nails used to take elevation measurements	3
Figure 3.1:	All twelve positions graphed by change in elevation (mm) over time (months)	6
Figure 3.2:	Elevation change over time of Positions 1 and 12	7
Figure 3.3:	Elevation change over time of Positions 6 and 7	7
Figure 3.4:	Elevation change over time of Positions 4, 5, 8, and 9	8
Figure 3.5:	Elevation change over time of Positions 2, 3, 10, and 11	8
Figure 4.1:	Side view of joint between bridge end panel and the adjacent slab (between Positions 2 and 3): a) before slab jacking; b) four days after slab jacking; c) three years after slab jacking1	3

1.0 INTRODUCTION

1.1 GLENN JACKSON BRIDGE FOLLOW-UP REPORT

The elevation monitoring in the report entitled Injected Polyurethane Slab Jacking (*Soltesz 2000*) is continued in this current report. The elevations of the concrete slabs are being monitored to see if polyurethane slab jacking is effective or not. The site has been monitored periodically since it was slab jacked three years ago. The current report will give a summary of the site as it is after three years.

1.2 OREGON'S EXPERIENCE WITH INJECTED POLYURETHANE SLAB JACKING

The purpose of this section is to see how successful slab jacking has been in Oregon. Information on slab jacking sites was requested from personnel in all of Oregon's maintenance districts.

2.0 TESTING METHODS

2.1 GLENN JACKSON BRIDGE FOLLOW UP REPORT

Brass survey nails were placed at twelve positions in the roadway for the first survey shortly after slab jacking. These positions were used to monitor the change in elevation of the slabs. The arrangement of the positions is shown in Figure 2.1.

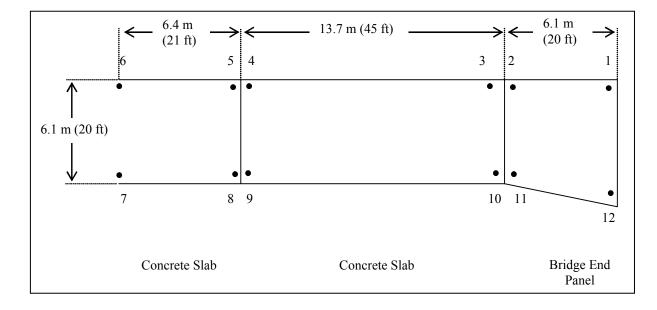


Figure 2.1: Arrangement of the brass surveying nails used to take elevation measurements

2.2 OREGON'S EXPERIENCE WITH INJECTED POLYURETHANE SLAB JACKING

Information on the slab jacking sites was requested of each maintenance district. Below are the different points of information gathered for each site:

- date of slab jacking
- exact road location of site
- cost of project
- current status of the road
- sub grade/ base material

- ADT (average daily traffic)
- pavement material
- original problem (water drainage, unstable sub grade)
- effort to fix the original problem
- injection target
- drilling depth
- amount of polyurethane injected
- dimensions of slabs (if concrete)
- number of slabs (if concrete)
- contractor
- reason for using polyurethane
- time to complete slab jacking

These data were used to compile a spreadsheet comparing different elements of each site.

3.0 RESULTS

3.1 GLENN JACKSON BRIDGE FOLLOW-UP REPORT

After three years, ten of the twelve positions show continued settling. The rate of settling (change in elevation of the slab) has decreased but has not stopped altogether. The results are shown in Table 3.1 and Figure 3.1.

011 0/14/2000		cincines are in i	minimeter 5;	osition locatio		i ili tile ulugi
Positions	9/14/2000	12/14/2000	6/14/2001	12/17/2001	6/17/2002	7/07/2003
12	-2.4	-3.6	-1.6	-2.0	-2.7	-1.8
11	-7.2	-7.7	-8.1	-8.5	-10.5	-11.5
10	-6.0	-6.7	-7.0	-8.0	-9.7	-10.3
9	-4.8	-5.4	-5.1	-6.1	-6.8	-7.7
8	-5.3	-4.8	-6.1	-6.3	-7.3	-8.5
7	-3.4	-4.4	-4.8	-4.2	-5.3	-5.9
6	-3.1	-4.1	-4.5	-4.9	-5.3	-5.7
5	-4.5	-4.5	-5.3	-6.6	-6.9	-7.5
4	-4.7	-5.5	-5.8	-7.6	-7.9	-7.9
3	-5.3	-5.5	-6.7	-9.0	-9.7	-10.2
2	-4.6	-6.0	-6.6	-8.8	-9.8	-11.0
1	-1.5	-1.1	-0.9	-1.9	-2.1	-0.8
Position Locations:		6 5 4 • • • • 7 8 9		3 2 • • • • 10 11	1 • 12	

Table 3.1: Relative change in elevation over time with respect to the first, post-injection survey on 6/14/2000. All measurements are in millimeters. Position locations are shown in the diagram.

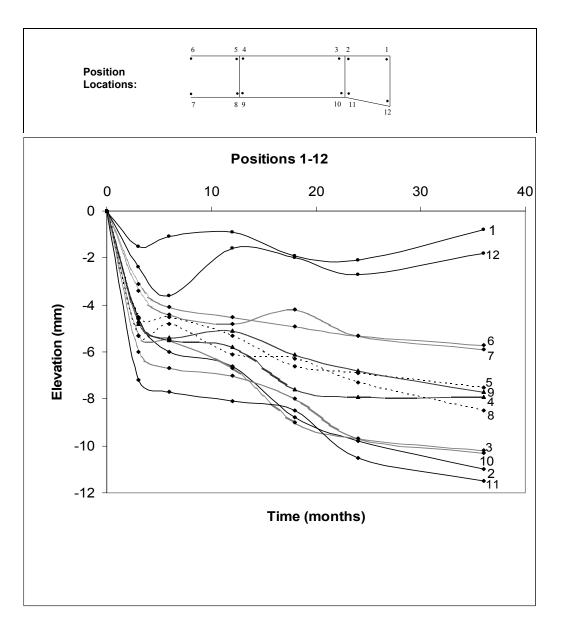


Figure 3.1: All twelve positions graphed by change in elevation (mm) over time (months)

The twelve curves in Figure 3.1 showed a natural separation into four groups: 1 and 12; 2, 3, 10, and 11; 4, 5, 8, and 9; and 6 and 7. The positions within these groups happen to be within relatively close proximity to each other on the roadway.

Graphs of the four position groupings showing elevation change over time relative to the first survey are shown in Figures 3.2 - 3.5. Positions 1 and 12 fluctuate over time, but they have an approximate slope of zero. The remaining ten positions all show settling.

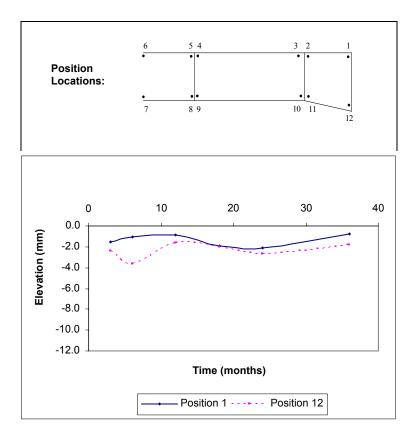


Figure 3.2: Elevation change over time of Positions 1 and 12

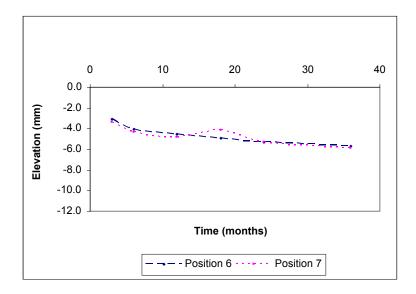


Figure 3.3: Elevation change over time of Positions 6 and 7

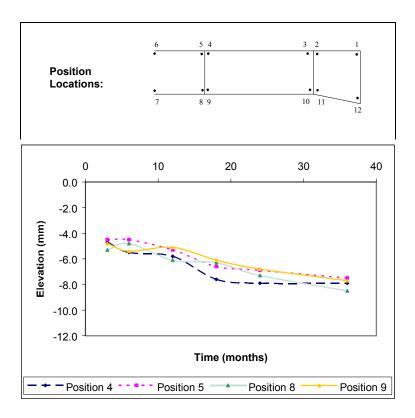


Figure 3.4: Elevation change over time of Positions 4, 5, 8, and 9

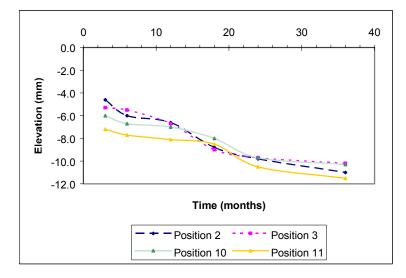


Figure 3.5: Elevation change over time of Positions 2, 3, 10, and 11

Linear regression was used to determine the line of best fit for Positions 2 through 11 as shown in Table 3.2. The slopes of the lines provide an estimate of the rate of settling at each position. The average rate of settling was calculated for the three groups containing Positions 6 and 7,

Positions 4, 5, 8, and 9, and Positions 2, 3, 10, and 11. The group of Positions 2, 3, 10, and 11 had the largest settling rate over the past three years with an average rate of elevation loss of 1.9 millimeters per year.

settling rate for groups of positions calculated from the slopes								
Position	Equation	Correlation Coefficient (R ²)						
1	slope is approx. 0							
2	y=-0.1948x-4.5856	0.95						
3	y=-0.1673x-4.9735	0.89						
4	y=-0.103x-4.8673	0.81						
5	y=-0.1012x-4.2136	0.92						
6	y=-0.0707x-3.4341	0.87						
7	y=-0.0631x-3.6259	0.78						
8	y=-0.1072z-4.6148	0.95						
9	y=-0.0876x-4.5375	0.94						
10	y=-0.1367x-5.694	0.95						
11	y=-0.1347x-6.6936	0.94						
12	slope is approx. 0							

 Table 3.2: Results of linear regression for each position and the average settling rate for groups of positions calculated from the slopes

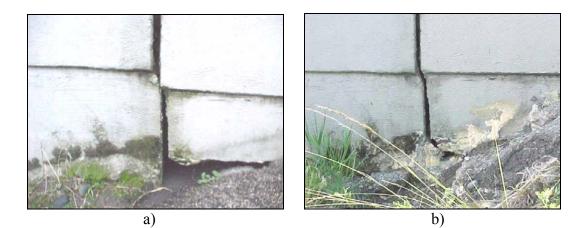
Positions by Groupir	ngs	Average Settling Rate mm/mo (mm/yr)				
1 and 12		арр	rox. 0			
6 and 7		-0.0	67 (-0.80)			
4, 5, 8, and 9		-0.1	0 (-1.2)			
2, 3, 10, and 1	11	-0.1	-0.16 (-1.9)			
Position Locations:	6 • 7	5 4 • • 8 9	3 2 1 • • • • • • • 10 11 12			

3.2 OREGON'S EXPERIENCE WITH INJECTED POLYURETHANE SLAB JACKING

According to maintenance personnel, Oregon's experience with injected polyurethane slab jacking has been successful. Table 3.3 includes the information gathered on some of the slab jacking sites in Oregon.

					Site				
Information Requested		Corvallis #2	GJ Bridge	Boyer Hill	I-5 Eugene	lowa St Slide	hw20 Toledo	hw 101	I-5 Azalea
Date	1999	1999	Jun-00	Oct-01	Spring 2001		Jul-03	2001-2003	1999 - pres.
Road location	NW Walnut Blvd. between King Blvd. and Rolling Green Dr.	NW Walnut Blvd. between Rolling Green Dr. + NW Garry- anna Dr.	I-5 south bound off-ramp to the Portland airport	Highway 18 between McMinnville and Lincoln City, 14 miles from the coast	I-5 impact panels on 8 bridges be- tween mile post 174.41 and 179.64 12 miles s of Eugene		Highway 20 Toledo business loop, filled in an old ODOT weigh scale site		20-30 sites through mile posts 87-81 on I-5 south bound between Azalea and Glendale
Cost	\$24,000	warranty item, no cost to city	\$42,260	\$3,250	\$55,000	\$3,500	\$1,756	\$15,000	
Current status	partly replaced	good	good	good	good		good stable	good, greatly reduced annual soil move- ment	road in poor shape but urethane is helping to keep it together until project in 2007
Sub grade/base material	lime-treated base	lime-treated base	sand	sand dirt 2ft rock wood chip	bar run-river rock, sand, dirf	silt, sand, tand clay	1 foot gravel then dirt	sand	clay and rock
ADT	10,000	10,000	132,200	17,300	40,000		17,000	18,000	16,000
Pavement material	PCC	PCC	PCC	ÂC	PCC	PCC w/ AC on top	AC	ÂC	30 yr. old PCC
Original Problem	not sure	not sure	leaky pipe	landslide	sub grade	slide movement	void from old weigh scale	landslide	drainage + subgrade

Table 3.3: Site evaluation spreadsheet


					Site				
Information Requested						lowa St	hw20		
	Corvallis #1	Corvallis #2	GJ Bridge	Boyer Hill	I-5 Eugene	Slide	Toledo	hw 101	I-5 Azalea
Effort to fix original problem	nothing	nothing	fixed pipe	woodchips to support road after landslide, polyurethane to protect from water damage	nothing	stabilize sub grade by drilling down past the base in to the sub grade	injected urethane to bring road bed up	inject ure- thane into cracks to prevent fur- ther sliding	had replaced road but that was expensive, also asphalt overlays and cement grout
, ,	under concrete	into sub grade	into sub grade	between sub Grade and wood chips	under concrete+ base matter	into sub grade	into sub grade	deep into sub grade	under concrete
Drilling depth	6-8 inches	36 inches	20 inches	4 feet	12 inches		3 feet	up to 30 ft	10 inches
How much polyurethane was injected?	4,800 lbs.	not sure	4649 lbs.	650 lbs.	9,100 lbs.	585 lbs.	290 lbs.		
Dimensions of slabs (if PCC)	12' x 15'	12' x 15'	45' x 20'	doesn't apply	24' x 20'	doesn't apply	8' x 8' void	too many sites	too many sites
Number of slabs (if PCC)	30	20-25	1	doesn't apply	not sure diff. sites	doesn't apply	doesn't apply	too many sites	too many sites
Contractor	URETEK	URETEK	URETEK	Spray Foam, Inc. Albany,OR	URETEK	URETEK	Spray Foam,	Spray Foam, Inc. Albany,OR	URETEK
polyurethane	wanted to try product, lowe into concrete easy clean-up process is cor	r intrusion panels, o after	wanted to try something new, confi- dent in URETEK's abilities	prevent combustion of wood Chips light weight cost effective Wouldn't cause another landslide	liked the idea of this method better than the old methods (cement grout, asphalt pave-over)	lightweight material would not cause any more slide movement in the area	lightweight material that would fill in void caused by old weigh scale, would not cause any more sinking	that won't cause future sliding,	don't want to dig up road yet, don't like cement grout, using urethane to temporarily stabilize the road bed
Time to complete project	4 days	4 days	6 hrs	1 1/2 hrs	4 days	1 night	2 hrs	8 hrs each	1-3 slabs/dy

	Site								
Information Requested		Corvallis #2	GJ Bridge	Boyer Hill	I-5 Eugene	lowa St Slide	hw20 Toledo	hw 101	I-5 Azalea
		had to grate road in order to make it smooth	used as Steve's test site (elevation)	used poly. to fix a previous landslide	1 panel did not work, rebar stuck, URETEK responsible				have done many sites to keep road ok until repair proj. in 2007
	Scott Dickinson (541) 766- 6916	(541) 766-	Steve Soltesz (503) 986- 2851	Jerry Stokes (541) 563- 6400	Donald Angermayer (541) 686- 7642	Ron Kroop (503) 229- 5266	Jerry Stokes (541) 563- 6400	Jerry Stokes (541) 563- 6400	Darrin Neavoll (541) 957- 3666

4.0 CONCLUSIONS

4.1 GLENN JACKSON BRIDGE FOLLOW UP REPORT

Because this slab jacking site has only been tested for three years, it is hard to make any conclusions about whether or not injected polyurethane has been a good solution to the original problem. The settling of the position groupings ranged from 0 to 1.9 mm/yr. However, to the naked eye, this site has not changed since slab jacking was done, as shown in Figure 4.1.

c)

Figure 4.1: Side view of joint between bridge end panel and the adjacent slab (between Positions 2 and 3): a) before slab jacking; b) four days after slab jacking; c) three years after slab jacking

4.2 OREGON'S EXPERIENCE WITH INJECTED POLYURETHANE SLAB JACKING

Based on the slab jacking sites investigated, Oregon's experience with injected polyurethane slab jacking has been successful. Slab jacking was used for fixing road problems caused by water drainage and unstable subgrades and for fixing/preventing landslides in wet areas such as coastal regions. It was used successfully for both asphalt and concrete pavement. However, using polyurethane slab jacking does not guarantee success, as illustrated by the site in Corvallis. The roadway owner should define the cause of the settling and determine what action is appropriate to solve the problem.

5.0 REFERENCES

Soltesz, S. "Injected Polyurethane Slab Jacking – Final Report." Report FHWA-OR-RD-02-19, Oregon Department of Transportation. June 2002.